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Abstract 

Invariance properties of the equations of motion are considered from the differential 
geometric viewpoint, on making use of vector fields and differential forms. It will be 
shown that the kinematical symmetries generated from first integrals and the invariance 
such as the dilation can be treated on an equal footing. 

1. Introduction 

The usual approach to the symmetry  problem of  a dynamical system 
starts with first integrals o f  the system (Ikeda, 1970). Symmetry  properties, 
however, can be regarded as invariance properties of  the equations of  motion.  
From this point  o f  view, the homogeneity of  the equations o f  mot ion  is an 
invariance property.  The isotropic harmonic oscillator is a simple example 
with such a property .  As to the dilatation invariance readers can refer to 
many papers, e.g. Currie, 1966, for the particle dynamics and Flata et al., 
I970,  for the field theory.  In the present work invariances o f  the equations 
of  mot ion  will be dealt with in two ways. 

Let M be an re.dimensional Riemannian manifold endowed with the 
positive-definite metric tensor (gi]). The equations of  motion are given by  

D2x i 
= f /  ( i=  1 2, , m) (1.1) 

dt 2 ' • . . 

where (x  i) denotes a local coordinate system of  M and D/dt  absolute deriva- 
t ion along a curve. ( f i )  is a given vector field o f  force. Equation (1.1) can be 
described on the tangent bundle TM or on the cotangent bundle T*M. The 
methods o f  description may be called Lagrangean and Hamiltonian formalisms 
respectively, even if there is no Lagrangean or Hamiltonian function. 

In Section 2 an approach to the invariance o f  a differential equation will 
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be prepared for later use. In Sections 3 and 4 the kinematical invarianee of 
the equations of  motion will be discussed in Lagrangean and Hamiltonian 
formalisms respectively. The term 'kinematical' is to imply being raised from 
transformations of M. Section 5 is concerned with the symmetry problem in 
the variational theory, e.g., Noether's theorem. 

It will be found that the invariance property in Hamiltonian formalism is 
covered by that in Lagrangean formalism. 

2. An  Invariance Algebra 

Let N be an n-dimensional differentiable ~ manifold and X a vector field 
defined on N. An integral curve of  X is given by a solution curve of  the 
differential equation (referred to the characteristic equation of X) 

dx----a= X ~" (X = 1, 2 . . . . .  n) (2.1) 
dt  

where (x x) denotes a local coordinate system of N and (X x) the components 
of X with respect to (xX). Let Y be a vector field on iV. If  there is a function 
0 on N such that 

[Y, X] = oX (2.2) 

it is said that equation (2.1) admits an infinitesimal transformation Y (Cartan, 
1932). So to speak, relation (2.2) shows the invariance property of  equation 
(2.1). The set of  all Y's 4 = X which satisfy (2.2) forms a Lie algebra, which 
may be called an invariance algebra of (2.1). 

Since we are interested in the equations of  motion, parameter t has to be 
regarded as time in the sense of Newtonian mechanics. Therefore we deal with 

lIT, X] = 0 (2.3) 

excluding the case o f p  4= 0 where transformations of t are involved. Affine 
transformations of  t, t '  = at + b, are still admitted by (2.3), but are not con- 
tradictory to the classical notion of time. An infinitesimal transformation Y 
satisfying (2.3) is called a variational vector f ield of X or (2.1). 

3. Lagrangean Formalism 

Let (x i, v i) be an induced coordinate system of the tangent bundle TM of a 
Riemannian manifold M. The equations of motion (1.1) can be translated into 

dt  - v (3.t)  

* ¢ 

a , , ,  = _ } A ,  k + :, t 
d t  

* Hereafter we will tacitly assume tha t  all manifolds,  vector fields, funct ions ,  etc., 
introduced have a suitable order o f  differentiability. 

"~ Unless otherwise stated, Latin indices run  f rom 1 to m and the  summat ion  con- 
vent ion is adopted.  
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where {}k} are the Christoffel symbols. Equation (3.1) is the characteristic 
equation of the vector field 

Z=vi~xi+(fi--{}k}t¢vk)~Ti (3.2) 

For a strict discussion, we have to verify that Z is defined independently of 
the choice of the local coordinate system. The verification, however, can be 
easily carried out. It is convenient to write the vector field (3.2) in the form 

Z = E + f i  3 .  (3.3) 3v t 

where E is defined by 

E =v i ~ - { { k }  v k ~  (3.4) 

and is called the GF-vectorfield (Sasaki, 1958). 

Given a vector field on M 

3 (3.5) X = ~i 3x i 

then its lift to TM (Sasaki, 1958) is defined by 

4 3 3~i v] 3 (3.6) 

We are now in a position to study the condition that the equations of 
motion (1.1) admit an infinitesimal transformation (3.5) of M. To this end, 
we have only to verify 

[2, Z] = 0 (3.7) 

where Z is given by (3.2) and .~ by (3.6). The result is written as follows. 

[2, z] = (£exfk) 3 3 - 3v--  = 0 ( 3 . 8 )  

where ~d' x denotes Lie derivation with respect to X. Thus we obtain the 
following theorem. 

Theorem 1. A necessary and sufficient condition for the equations o f  
motion (1.1) to admit an infinitesimal transformation (3.5) is given by 

~¢#'xf k = 0, ~gax{)k } = 0 (3.9) 

That is to say, X is an infinitesimal affine transformation that leaves the 
force fieM (fk } invariant. 

The dilatation invariance of the isotropic harmonic oscillator is covered 
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by this theorem. As is easily seen, if the dynamical system (TM, Z) is con- 
servative, that is, _ f k  = gei(bU/~x]), (gel) denoting the inverse of (g/i), then 
(3.9) includes the condition for the kinematical symmetry (Ikeda, 1970): 

~ x U  = o, f xgq = o 

4. Hamiltonian Formalism 

In classical Hamiltonian mechanics dynamical states are described by 
( x/, Pi), where Pi is defined by Pi = gij vi, and is called generalised momentum. 
So it can be said that Hamiltonian mechanics is described on the cotangent 
bundle T*M. To make sure, we note that the cotangent bundle of a Rieman- 
nian manifold is diffeomorphic to the tangent bundle. And the diffeo- 
morphism, ~o: TM-~ T'M, is given by 

X i = X i, pi =g/jv ] (4.1) 

in local coordinate systems. The dynamical law given by (3.2) is transformed 
onto the cotangent bundle by the differential ~o, of ~0. 

Lemma 1. Given Z defined by (3.2). Then the transformed vector fieM 
¢ ,Z  on T*M is given by 

aT a 
~0,Z = (4 .2)  

where f /=  giJ i and 

Proof. 
gives 

3T ~ 

OPi ~X / OX / ~Pi + fi  ~Pi 

T = ½gqPiPi (4.3) 

Let E be the GF-vector field defined by (3.4). Direct calculation 

~T ~ OT 
~o,E = 

OPi ~x i Oxi ~Pi 

~,  f i  7~ i =.~ ap/ 

Hereafter we put Z* = ~o,Z. 
Lemma 1 shows that the well-known fact that the time development of 

the Hamiltonian system is subject to the equations 

(4.4) 

{ ax'=ar 
dt ~Pi 

d p , = a T  f. 
dt ~ x  i + ~z 

(4.5) 
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The lift of the vector field X (3.5) on M to the cotangent bundle T*M 
(Yano, 1967) is defined by 

X* = ~i ~ o~k ~ (4.6) 
OX i -- Ox i Pk  Op i 

Here we give a lemma. 

Lemma 2. Let X and X* be the lifts defined by (3.6) and (4.6) respectively. 
Let ~ denote the diffeomorphism given by (4.1). A necessary and sufficient 
condition for ~ , X  = X* is that X is a Killing vector fieM. 

Proof. Simple calculation gives 

tp,X= ~i ~ [ " ~gik +_.. ~ ) 0 (4.7) 
aP-5" 

Assertion in the lemma is clear from (4.6)and (4.7). 
If X is a variational vector field of Z, [X, Z] = 0 holds good. Since ~0 is 

a diffeomorphism, we have [~0.)(, ~0.Z] = 0. Therefore, from Lemma 2, the 
sufficient condition of the following theorem is satisfied. 

Theorem 2. X* defined by (4.6) is a variational veetor field o f  Z* defined 
by (4.2), if and only if  

~oqaxf i = O, ~xgi/  = 0 (4.8) 

Proof If we calculate (2.3) for X* and Z*, we obtain 

[X*, Z*] = - . ((Vi~k)gUpkpl + f.~i) ~X] 

( ~  ~ o~l ] --=D (4.9) 
+ ((7i~k)gilpkpl) + ~l + fl - 0 

\OX Ox' ~pj] Op] 

From the first terms of (4.9) it follows that 

Vi~x + 7k~i = 0 

Substituting this into the last terms, we have 

l _0__fL 0 ~ t = 0  
~x~ = ~ axZ + h axJ 

As is mentioned in Section 1, Theorem 2 is covered by Theorem 1. We 
note that Lemma 2 explains the difference between Theorem 1 and Theorem 2. 

The lift X* defined by (4.6) can be regarded as the infinitesimal canonical 
transformation 

OF O OF O 
XF- 

OPi 3x i Ox i OPi 

generated from F = ~ipi. For a general infinitesimal canonical transformation 
we have the following theorem. 
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Theorem 3. The infinitesimal canonical transformation generated from a 
function S on T*M is the variational vector fieM of  Z*, if and only if the 
following equations are satisfied by S. 

_~xk ((S, . OS~ OS { ~_~f. ~ . ]  (4.10) 

where T is the function defined by (4.3) and (S, T) denotes the Poisson 
bracket between S and T. 

Proof We have obtained ~o,E = XT in (4.4), where XT denotes the 
infinitesimal canonical transformation generated from T. We note the 
formula 

[ X s ,  X T ]  = -- X(s ,  r) (4.11) 

From these facts we obtain 

[Xs,Z*] --- ~p~° ~s, T) +s, ~ ] ~  

(4.12) 

+ ~s, r) + ~ SxU] OPk 

This completes the proof. 

Theorem 4. /jr the dynamical system (T'M, Z*) is conservative, that is 
fi = - (~ U/Dxi), then (4.10) is reduced to 

(S, H)  = const. (4.13) 

where H is the Hamiltonian defined by 

H =  T+ U (4.14) 

Proof. Since the system is conservative, Z* is rewritten in the form 

OU 
z* : xT - ~ ~ :  x .  

Consequently (4.12) is reduced to 

[xs ,  z * ]  : [xs ,  xH]  : -  X~s, m : o 

and (4.13) is obtained. 

5. Relation to the Variational Theory 

In what follows we deal with the invariance property developed in Section 3 
in terms of differential forms. Such a way of discussion is a variational 
approach to the invariance. 
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All instruments are set on the product TM x R. (x ~, v ~, t) is adopted as a 
local coordinate system. The 2-form defined by 

co = d(gijddx i - Tdt) + f idx  i A dt  (5.1) 

is called the generating form of the equations of motion, where 

T = ½g~p iv1 (5.2) 
If  we introduce a notation Dvi, covariant derivative of v i  by 

Dvi = d v i  + (~k } vkdxJ (5.3) 

we can rewrite (5.1) in the form 

co = gii(Dv i - f i d t )  A (dx i - vidt) (5.4) 

It is clear that the definition of w is independent of the choice of local co- 
ordinate system. 

If a vector field Y on TM x R satisfies 

i(Y)o~ = o, Yt = 1 (5.5) 

where i (Y)  denotes interior product by Y, Y is called the characteristic vector 
field of co. The characteristic equation of Y is called the characteristic equation 
of co. The reason for the name of generating form is given by the following 
theorem. 

Theorem 5 (Hamilton's principle'). The equation o f  motion is given by 
the characteristic equation o f  the generating form ~.  

Proof As is easily seen, 

( !  ) i s (5.6) 

is the only solution to (5.5) and coincides with (3.2) up to O/3t. 
The following lemma is trivial. 

Lemma 3. A necessary and sufficient condition for the generating form 
to be closed is that f f l x  i is closed, so that the system is conservative. 

A first integral is defined as a 1-form 7r on TM x R satisfying 

d r  = 0, ~(Z) = 0 (5.7) 

where Z is the vector field given by (5.6). The following theorem is a differ- 
ential geometric version of the so-called Noether's theorem. 

Theorem 6 (Gallissot, 1954). Let  co be closed. I f  Y is an infinitesimal 
automorphism o f  w, that is, ~ y w  = O, i(Y)ca is a first integral Conversely 
if  lr is a first integral, there is a vector fieM Y such that i( Y)w = 7r, and Y is an 
infinite~mal automorphism o f  ~. ( Y  is called to be generated from lr.) 

Let X and w be the vector field (3.6) and the generating form (5.4) 
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respectively. We calculate the Lie derivative of w with respect to 2" we 
obtain 

~q~caa = (~xg i] )  ( D r / -  f / d t )  A (dx i - vidt) 
(5.8) 

+ gii(~CPX(]l} vldx k -- ~LPxfidt ) A (dx i - vidt) 

This result is very useful for our discussion. We can attain Theorem 1 by 
virtue of  (5.8). In fact, if X leaves the equations of motion invariant, Z must 
be a characteristic vector field of  Le~ co. And we have 

Thus we are led to (3.9). Conversely if (3.9) holds, Z is a characteristic vector 
field of  (5.8) together with (3.9). 

We assume that co is closed, so that the system is conservative. Then we 
can say that the invariance discussed in Section 3 is not necessarily generated 
from first integrals. In fact, i f X  is generated from a first integral, it must be 
an infinitesimal automorphism of co (Theorem 6), and X is a Killing vector 
field by virtue of  (5.8). Therefore it follows that if  X is not a Killing vector 
field X cannot be generated from a first integral. We have known an infinitesimal 
homothetic transformation which is not a Killing vector field (the dilatation 
invariance). 

Retaining the assumption for w, we use (5.8) to show one theorem. As a 
definition, Y is an infinitesimal conformal transformation of co if there is a 
function p on TM x R such that ~Lfy~ = p¢o. 

Theorem 7. Assume that M is connected, m > 1 and w is closed. X given 
by (3.6) is an infinitesimal conformal transformation o f  w given by (5.4), i f  
and only i f  the following conditions are satisfied. 

~ x g i ]  = P gi], ~°-~xf i = O, p = const. (5.9) 

That is to say, X is an infinitesimal homothetic transformation that leaves the 
field ( f i  ) invariant. 

Proof  Suppose that X is an infinitesimal conformal transformation. Under 
the assumption of the theorem, it is known that p is constant (Takizawa, 
1963). On the other hand (5.8) gives 

Lexgii = Pgii, Lex (J } = Lexf  = o 

Since a homothetic transformation is affine, (5.9) is obtained. Converse is 
clear from (5.8). 
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